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Abstract 

Some formulae for decomposition of partial and covariant derivatives of any order are established. 
From these we obtain the compatibility conditions for the jump of derivatives of scalar functions 
and tensors which are regularly discontinuous across a hypersurface. Thus the formulations of 
ordinary compatibility conditions and of “distributional” compatibility conditions are re-expressed 
in a noniterative form, extended to any order, and related to each other. 
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1. Introduction 

In space-time compatibility conditions relate the jump of partial derivatives of a regu- 
larly discontinuous function (a physical variable), while crossing a hypersurface C (wave 
front of a discontinuity wave), to the normal vector and its derivatives, by means of some 
functions which are characteristic of the discontinuity. They are essential for the study of 
wave propagation phenomena in relativity [8,15-17,20,23], and it can be shown [I ,2] that 
they unify, as their space and time components, the well-known geometric and kinematic 
compatibility conditions of classical mechanics [3,4,7,13,22,24]. 

A genera1 compact but implicit formula, for any order of derivation, of these conditions 
was given by Cattaneo [5,6] (see Section 4.6). 
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Similar conditions hold for tensors; these conditions are usually formulated [2,18] up 
to the second order, and can be extended to higher orders by iterative derivation. Another 
method, due to Lichnerowicz [ 15-171, gives the same results in terms of distributions and 
tensor distributions, also in this case up to the second order of derivation, and suitable of 
an iterative extension [9]. 

Here we establish, in the local geometry framework, a decomposition formula for iter- 
ated partial derivatives of any order (7) and one for covariant derivatives (38). From the 
application of these formulae we obtain the general compatibility conditions (47) and (49) 
in a direct (not iterative) form. Some other decomposition formulae (9), (41) are given, from 
which the “distributional” compatibility conditions (52) are obtained, also in this case in 
direct form and for any order of derivation. 

The introduction of ordinary and distributional infinitesimal discontinuity (46) and (5 1) 
clarifies the relation between the two formulations of the compatibility conditions, and 
allows to move easily from one to the other. 

2. Decomposition of iterated partial derivatives 

2.1. Inner and exterior derivatives 

Let VN+I be a differentiable manifold, x its generic point. Greek indices run from 0 to 
N and latin ones from 1 to N except where otherwise stated. In a c VN+I, open and 

connected set with compact closure, let f E C”‘(Q), m E N, m 2 1. Let e, dzf &f and 
Lo # 0 in Q. Following Cattaneo [5,6], we introduce the inner (to the generic hypersurface 
.!Z: f = const.) partial derivatives a, and the exterior partial derivative 2: 

2, dAf a, - za,, fj d&f -$jo. (1) 

We have the following decomposition of the operator a, : 

a, = & + c,S. (2) 
These derivatives have the following properties: $0 = 0, [&, 3~1 = [s, a,] = 0. About the 
iterated partial derivatives of orders 2 and 3, we have, from (2), 

asa, = i++3, +c,$ +c&Z +e,i$S +.~fz~?P, (3) 

_ _ I  Y - ” I ” I ” 

apapacu =a,asa, +ecrspa +a,a,a +e,asa +euBapa 
+e,3&8 +e&&z +e,&$p5 +&&* +C&J* 
+C,#JC,8*+C,e&3* +@&i* +C&$p~*+~pq&y~3, (4) 

where &b dzf +&, ecrbP dzf a&~, . . . 
In (3) and (4) we recognize a formal polynomial in 5 with sums of operators of the kind 

“4%’ as coefficients. With the generic operator of the kind “f?%’ we mean any operator 
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given by products of components of e and of its derivatives times some operators of inner 
derivative (example: &JZ,&,?$), including the cases of a simple “P product operator 
(example: C,~~~po), and that of a simple “%’ inner derivation operator (example: $,8,8,). 

In order to recognize the same polynomial structure in any order of derivation, which, as 
will be shown in Section 4, has interesting consequences for the compatibility conditions. 
we are soon going to define the suitable general operator coefficients. 

2.2. Multi-indices 

We indicate a multi-index with a capital latin letter. 
If A is a multi-index, let IAl be the number of indices of A: for example, if A 

(;Y,,(Y~-I . .C;YI, IA/ = n. 
If B and C are two multi-indices, let B + C be the multi-index given by their joining: 

example,ifB=~m~m_~...~~andC=Y.~Ys_~...Y~,thenB+C=~,...~~y .,... 
Thus IB + C/ = IBI + ICI. 

If we consider a multi-index B constructed with a subset of a given multi-index A, 
write B c A (for example, if A = c@papu and B = @a, then B c A). 

= 

for 

Yl 

we 

We say that two multi-indices B, B’ c A are d@erent in indices if they are not constructed 
with the same subset of indices of A, i.e. if there is no permutation of B that gives B’. Of 
course, if / BI # 1 B’I then B and B’ are also different in indices. 

When a multi-index A = (Y,, . . al is given, we say it defines a reference decreasing 
order. If B c A is increasing with respect to this reference decreasing order (for example, 
if A = qja5 .a~, then B = 0!2(~3(~5 is increasing) we indicate it by the expression 
B = B+, B = B- if it is decreasing. 

Let the expression (B +C = A] indicate the set of all possible different in indices couples 
(B. C) such that B, C c A and B + C is equal to A or to some permutation of A. 

If {B;] is a finite family of multi-indices with i = 1, . , k, let I (Bi] I = k denote the 
number of multi-indices of that family. 

If A is the multi-index A = (~,,a!!,_1 . . al, let aA dz a,,&_, . a,, ; similarly for other 
differential operators. 

2.3. The operator coeficients 

Now we define the operator coefficient: if A is a multi-index and j E N, let 

( {& nr,)zc. (5) 
(B+C=Al i 
c=c- [{8i)i=J. B,=Bti 

As explained in Section 2.2, the first sum in (5) is over all possible couples (B, C), B, C c A, 
different in indices and with C decreasing, such that B+C is equal to A or some permutation 
of A; the second sum is over all possible different sets (Bi) of j increasing multi-indices 
such that ci Bi is equal to B or to some permutation of B. 
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In other words (5) is the operator given by the sum of all possible operators of the kind 
“,s” such that: 
(1) are constructed with all the indices on . . MI of A; 
(2) contain j factors of the kind ‘Y”; 
(3) indices are taken in decreasing order in the terms of the kind a~, and in increasing order 

in the factors eni (with respect to the reference decreasing order of A = an . . . al), as 
shown by - and + symbols in (5). 

It is easy to show that (2) is equivalent to 
(2’) contain 1 A 1 - j derivatives, counted among those in 3, and those of the components 

of the gradient vectors &. 
As for example (we omit for brevity the “(C, a)“): 

Furthermore, let Li (e, 2) be the sum of all the terms of Pi (l, 5) containing only factors of 

the kind “P’, and let (Ls)i(C, 3) be the sum of the remaining terms: (Li)); d&f Pi - Li. 
For example we have: 

2.4. Decomposition theorem for partial derivatives 

Given two general operators over tensors, A and B, let dB denote the product operator, 
which operates on the argument T as follows: Al?(T) G d(L?(T)), and let (da) denote 
the one that let A operate, in a formal way, only on B, and then operates on T: (dB)( T) E 
d(B)(T). For example: 

We notice that the operators above differ for the term -&p $,, i.e. LAu a,, . 
In the general case, with our notations, it is not difficult to realize that we have the 

following formulae for the operator coefficients: 

(6) 

where 6, is Cattaneo’s double-valued differential operator [5,6]: 
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6, d&f 
aa if operating over a factor of the kind “C’, 

3, if operating over a factor of the kind ‘?!I”. 

Thus we can prove the following theorem. 

Theorem 1. If A is a multi-index, then 

(7) 

Proof Let A = c+, . . . (~1. After realizing that (2)-(4) give (7) for n = IA 1 = 1. 2.3, in 
order to prove (7) by induction, we suppose 

n-l 

aan_, ...u, = c poi_,...a, ij (8) 
j=O 

By derivation of (8) for a,, , (6) easily lead us to (7). 0 

2.5. “Scalar x derivatives” formula 

Theorem 2. Let 4 and @ be two functions in C” (L2), n E N, and A be a multi-index with 
IAl = n. Then 

(9) 

where the equivalence 2~ means equality butfor terms containing inner derivatives of $, 

and where of course the Pi (C, a) operator coefJicients are constructed with the same method 

(5) of Pi (C, a), but with the partial derivatives 8, in place of the inner derivatives a,. 

Proof For the operators Pi(& a), instead of (6), the following analogous formulae hold 
(this time we omit the “(e, a)“): 

(%I C-I.,_ a,) = (6% PC!- I__. lx, )* 

3% poi_, ..,(I, = (3% pin- I... (I, ) + C-, . ..(Y. a% 1 (10) 

fin...,, = @% e_ I.., Ly, 1 + c-I.., (Y, 3% + f% en:‘,...,, . 

From (2) a,(#+) = @la,@ + #(a,@ + f&s@) Se $a,@ + fY,@%@, so (9) is verified for 
n = 1 A 1 = 1. Then, in order to prove (9) by induction, we suppose 
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After derivation of (1 la) for a,+, and substitution of (11 b), formulae (10) easily lead us to 

(9). cl 

We furthermore notice that (10) hold also if I$ or I,+ is a distribution over the space of Cn 
test functions with compact support K c C2, once the definition of product of a function 
times a distribution and that of derivative of a distribution (see for example [ 12,141) are used. 

3. Decomposition of iterated covariant derivatives 

3.1. Inner and exterior covariant derivatives 

Let VN+~ be a Riemann manifold, V, its covariant derivative, and Rasp” = i3pf,,U - 

a’YrSPa+rDIPurSva-rSPVrOLV CJ its curvature tensor, where r,,O are Christoffel’s symbols 
(see for example [19, p.2191 or [ll, p.311 ). 

In Q c VN+I, open and connected set with compact closure, let f E C”(D), m 2 1. 

Let &. dzf a, f and lo # 0 in Sz. We define, similar to Section 2.1, the inner “covariant” 
derivative VU and the exterior one V7: 

(12) 

The result of the operation VU is still a tensor with respect to coordinate transformations of 
the type: xi’ = _xi’(xk), x0’ = x0’(P), i, k = 1, . . . , N, a! = 0, . . . , N; such transforma- 
tions also keep V = 0’ unchanged. 

Like in Section 2.1 there is the following decomposition: 

v, = Vu + c,o. (13) 

Again Vu = 0, but this time these operators do not commute, so much more complications 
arise when we are looking for formulae similar to (7) and (9) but involving covariant instead 
of partial derivatives. In order to reach this aim, which later will reveal its utility, we are led 
to introduce, in the following, some suitable differential operators. 

It results, from the definitions, 

I_ _” 1 
VV, - V,V = -(VuV, - V,Vu), 

(0 

where in the general case Ricci’s formuZa (see for example [2 1, p. 1401 or [ 10, p. 1881) holds: 

(0~0, - V&)T;;;; = R,&T,q::. +. . - R,/$T;,y: - . . (15) 

Let us define the operator ?a dAf (VVa - VU+), i.e., 

jz TV... def LR 
ff p... - 

e0 
~od”T~,::.+...-iR~o,“T~~:~-.... 

CO 
(16) 

Furthermore we give the iterative definition of a more general operator ?A : 

FCY, . ..ctn dAf Vanfcq ..a,_, - ra, . ..lY.-, QY”. (17) 
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3.2. Commutation and inversion formulae 

By definition (16) of ?,, Ricci’s formula for the commutation of inner and exterior 
covariant derivatives is 

Now we introduce the operator RA: 

RA dAf PA@, V) (19) 

(where PA@, 0) is obviously the analogue of operator (5) for j = 1 with r in place of e 
and V in place of a). Since R, c ?,, the second covariant derivatives can be decomposed 
as follows: 

vpv, = QJR + (L$ + e&&y + e&?)e + e&J? + QR,, 

where L,B dGf VP&. We have the following: 

(20) 

Theorem 3. For every multi-index A, 

(21) 

Pro05 In this case, the formulae analogous to (6) are the following: 

V~“~c&,...(Y, = (VLY,R,“_ ,... cu,) + Tcr,_ I.,, (I, VU,, 
R (Y”...(Y, = VcJL_ I... IX, + k&-I... (Y, . 

(22) 

The validity of (21) for n = IAl = 1 is assured by (18). If we suppose 

VVCX- I... a, = VCY- I... (Y, V + R,,_ I.., Ly, 3 (2% 

then, for (18) VVU “.., (y, = VU,VVan_ ,,__ U, + FU,VU,_ ,... (y,, so from (23) and (22) we get 

(21). 0 

Moreover, let us introduce the operators Rz’, i E N, i 2 1: 

T,“.:;. + . . . _ Qi-’ T,v;;; + . . . 

with R$‘) E 7Z, E ?a. For them it results 

VR(i) = R(i+r) + R(i)+ 
L7 (r (Y . 

At last we define the formal differential operator 

(25) 
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which, of course, makes sense only if applied to the exterior derivative CT of a tensor: 
b,eT = GucT + 7&T. Now we can rewrite (18) in the following form: 

and (21) as follows: 

VVA = ti)AV (28) 

by introducing the inversion operator 

D* dzf VA + l&V-‘, (29) 

which also makes sense only when applied to the exterior derivative +T of a tensor. It is not 
difficult to prove, for example by iteration of (27), the important property that the inversion 
operator DA can be expressed by product of operators & of (26): 

&,...., = &,&_, . . . L,, 

If we define the operator fiim”‘, m 2 0, by 

(30) 

VmV, E $m)Vm _ jj(m) d&f @VU++ 
(I (Y , rnEh4, 

then the inversion formulae hold: 

(31) 

+i$rn) = b(i+m)+i 
CY , iEZ, i+m>O. (32) 

These formulae have a precise meaning once we establish which is the form of the operators 
fi,$‘. For example, from (32) one can easily find: 

(33) 

; @’ = VU +3&&l + 3@V- + @‘V-3. 

In the general case it is possible to recognize that 

(34) 

having defined, Rz dzf VU. Operator (34) is admissible, i.e. it makes sense, only if applied 
to the kth exterior derivative Vk T of a tensor. 

Now we can consider operators of the kind: 

$kn...h) d&f $k,)~;kn_;l) . . . $$I). 
(Y”...lY, % n 

Operators of this kind can be explicited from (31) and (32): 

(35) 
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bF)fi;h) = 2 (5) R:) E (h J j) RLj)+-(i+j); 

i=O j=O 

d~)i)/lXIB(hl=~(;)R~)~(kTi)R~) 

h-(/+i) 

X 
C( 

h-(l+i) 

j 1 

R(j)+-U+i+j) 
(Y 

i=o 

The operators above are admissible when h > k > r, and when applied to a Vh. For 
example,ifr=h=k= 1, 

DgD, = V& + (O,R, + RgV,)?‘, (36) 

O,O,& = VpVBVa + (V&JR, + V’,R~R, +7&&V&-i. 

It is also possible to calculate explicitly the general operator of the kind (35); it results 

(37) 

where Ui, dsf - c;=, il and sij dkf c;ii i,_l, and one can recognize that such an operator 
is admissible o&y when 
(a) kl > k2 1 2 k, (kt E N), 
(b) it is applied to the mth exterior covariant derivative of a tensor V* T with m L kl . 

3.3. Decomposition theorem for covariant derivatives 

Theorem 4. If A is a multi-index, then 

IAl 
VA = c P;(L, DCR’)+, 

j=O 

(38) 

where the operator coeficients Pi (L DCR)) are constructed with the same method (5) of 

Pi(tZ, a), but with L in place of J? (where L,B dAf VP&, L_,g,, dzf V,L,p . .) and D in 
place of a, and the upper indices (k) are assigned to each “D, ” according to the following 
rule (R of DCR) in (38) stands for “rule”). 

Rule. Each upper index k of b(k) must solve the equation 

k=j+l-i+a, (39) 

where: 
(1) j is the upper index of the Pi in which the considered “&” appears, 
(2) i is the index of oi with respect to the given A = (Y, . . . a~, 
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(3) a is the total number of indices CY~I, with 1 < i, that appear in the same “Lb” term of 
the considered & as index of derivation (of the kind ha,, or of covariant derivation 
of the normal vector e,, like for example in Lwb.,.ml..,). 

Pro@ With our notation (13) and (20) can be re-expressed as 

v, = D(O) + c,o, 
-70, - 0 

(40) 

V/JV~ = Dg 0: ) + (Lap + Qb,$‘) + L,b;))i7 + &J/j?*. 

They satisfy rule (39), their operators are all admissible in the sense of Section 3.2, and 
moreover they assure the validity of (38) for n = IAl = 1, 2. It is easy to see that the 
admissibility of an operator is preserved by derivation for VU, and the same occurs, of 
course, for the polynomial character in 0. So, if we prove that rule (39) is also preserved 
by derivation, the theorem will be proved. 

Let us consider, then, the generic “Lb*’ term of P&, ,,,(r,, suppose it satisfies rule (39), 
and let us derive it by V,,, = VU, + e,, V: 

(a) VU+, acts over the “L” factor of “Lb” making a new term appear in Pin...,I,. The upper 
indices (k) have not been touched, i, j and a are not changed, so the rule is still satisfied. 

(b) Va, acts over the “b” factor of “LL?, making a new term appear in Pi,,...,, , a term of 
the kind “LVa,, b”. Indices in “l?’ are unchanged, and the index 0 for & (Van z fi$‘) 
satisfies the rule, because i = n and a = n - 1 - j (for, as seen in Section 2.2, in each 

term of &,...(y, there are exactly n - 1 - j derivatives). 

(c) C,” V acts over the “L? factor of “Lb”, making a new term appear in PJ,,,.& . The new 
indices (k) are now increased by 1 (for the inversion formula (32)), but also j is now 
increased by 1, so the rule is again satisfied. cl 

3.4. “Scalar x derivatives” formula in the covariant case 

Let now $ be a function E C”(Q), and let T be a tensor of the same continuity. Similar 
to (9) we have the following: 
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Theorem 5. If A is a multi-index, j E N, then 

@VAT Y$ c Pi(L, V)(-l)j$$ T, (41) 
j=O 

where this time g$ means equality butfor terms containing DLk’ of @ and of their exterior 
derivatives ik$r. 

Proof (4 1) is easily verified for the first integers. Moreover ( 10) remain unchanged if one 
substitutes P(e, a) with P( L, V) and 3, with V,, so (41) can be considered proved. 0 

Analogous to (lo), (41) holds also if @ is a distribution, the product of a distribution 
times a tensor being a tensor distribution (see [ 141). 

4. Compatibility conditions 

4.1. Discontinuity hypersutiace 

In D let C be a hypersurface of equation f(x) = 0, f E C”(Q), m 1 1. Let C, dzf 3, f 
and let Ba # 0 in Q. .E divides Q into R+ and R- in accordance with the sign off. 

If we consider inner and exterior partial or covariant derivatives (1) and (12), we have 
that inner derivatives have on C values depending only by the restriction on C of the 
function or tensor they are applied to [2]. In particular, plc = const., T 1~ = const. + 
&p = GUT = Oon EC. 

Let cp be a function E C’(Q\Z): 

cp(x) = 
(PO+(x) ifx E G?+, 

K(x) ifx E JT, 

with cpf dz V[Q+ E C(a+) and cp- dAf q]am E C(Q-). 
If cp+ and cp- admit, in each point of _?Z, the limits ~0: and ‘p; when the point x tends to 

C, respectively for f + O+ and f + OW, then on C the jump or discontinuity is defined: 

and C is called a discontinuity hypersu$ace for cp. 
Algebraic properties of the jump are: 

[cp + $1 = [(PI + [$I. [co@1 = m + cp[lcIl 

being GdAf $ ($+ + I+-). In particular, the product with a continuous function cp ([cp] = 
0, q = cp) commutes with the jump operation. 

All these can be extended in a natural way to tensors. 



244 G. Gemelli/Journal of Geometry and Physics 20 (1996) 233-249 

4.2. Regularly discontinuous functions and tensors 

Let + E C”(sZ\C) (the same continuity supposed for C), and let +* dAf @IQ% and 
their derivatives admit a limit over C, such that the jumps [@I], [6’,$], . . . are well defined 
on Z: up to order m. 

Furthermore, let @+ and I+- be prolongable in an m-regular manner in an open set 
U 1 ,E, i.e. let them be the restrictions to U+ and U- of two functions $* E C”(U) 
whose derivatives take on C values corresponding to the limits of the derivatives of I,!J*. In 
such a case we call + an m-regularly discontinuous function on C. 

An m-regular function (i.e. of class P(U)) is also m-regularly discontinuous (with null 
discontinuities). 

If m = 0, we simply say that the function is regularly discontinuous. Finally, we say that 
the function is m-regularly discontinuous of order r if + E C’-‘(a), but @ @ C’(Q). 

It is not difficult to show that a sujkient condition for $* E Cm (52*) to be m- 
prolongable is that their limits on C and those of their derivatives are bounded. 

Once a prolongation II/* is chosen, it is possible to define the jump of + and of its 
derivatives not only on .E but wherever in U: 

[@I] fEf $+ - l+- E C”(U), 

[a,@] %if a,++ - i&l+- E c”-‘(u), . . 

so that in U the operations of jump and of derivative commute: 

&[lCIl = r&Yv+1, 4d,[llrl = ~&x~pkl~~~~ 1 (43) 

and the same is for jump and inner or exterior derivation, being f? E Cm-’ (U). 
But, on 22, [@I and its derivatives are independent from the choice of the prolongation. 
Therefore in the following, when writing the jump of a regularly discontinuous function 

and of its derivatives, it is intended that they are considered on the discontinuity hypersurface 
Z, the only place where they are well defined; but, for what previously seen, we can apply 
without any problem the differential operators 8,) &, i to them. 

The extension to tensors is trivial. 

4.3. Infinitesimal discontinuity 

We call injinitesimal (or weak) discontinuity of order n of the m-regularly discontinuous 
function @, the function 

an+ dAf[Sn$], n =O,...,m. (4) 

We borrow name and notation from Lichnerowicz [ 15-l 71, who defines it for tensors, as a 
tensor distribution (see Section 4.5). a”+ corresponds to the cq, introduced by Cattaneo in 

[51. 
We denote [$I = a’+ and a$ G a’$. 
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From the definition it follows: i3 ‘+’ = ia”. The operation of infinitesimal discontinuity 
has properties similar to those of a derivative: 

a(a*) = aa+ vu E R, a(p + llr) = acp + ah (45) 

which justifies the notation. The typical rule of derivation of a product also holds. but only 
for continuous functions. 

A fundamental property is that if q~ E Ck(J2), then a’cp = 0 for i = 0, . . . , k. 
With complete analogy we define the infinitesimal discontinuity of a regularly discon- 

tinuous tensor T: 

a”T d&f [+‘T]. (46) 

It is a tensor of the same order of T. defined on C 

4.4. Compatibility conditions 

Having introduced the infinitesimal discontinuity, from the decomposition formula (7). 
by simple “multiplication” for [q] (i.e. applying the formula to cp and then calculating the 
jump), we obtain, as a corollary, the compatibility conditions for partial derivatives of a 
regularly discontinuous function: 

(47) 

analogue of those by Cattaneo [5,6], but in explicit form (provided one knows the operator 
coefficients from (5)). Moreover in the particular case that cp is (IA 1 - I)-continuous (i.e. 
ajp = 0 for j < ]A]) conditions (47) give those in [24, p.498, formula (176.1 I)]. 

As for example we have: 

]a,cp] = &PI + ecra6 (48a) 

[a,a,cp] = ~$Lk.4 + (e,S + e,S, + bp)aq + tdga2q, (48b) 
[a,a,add = $&h44 + (eaBp + e&L + G$Q + fan& + e,&& 

+ q4Ju + c,&&)acp + (e(ypeB + espc, + -c+d, + ~,q$, 
+ c,L,& + egc,S,)a2p + e,qdaa3p. (48c) 

Similarly, the decomposition formula (38), by multiplication for [T], in the hypothesis that 
the curvature tensor is at least of class C IAlP (such that all its derivatives appearing in (38) 
have null jumps) gives: 

IAl 
[VAT] = c Pj(L, bcR))ajT, 

j=O 
(49) 

which expresses the compatibility conditions for covariant derivatives of a regularly dis- 
continuous tensor. For example: 
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[V,T] = E’“‘[T] + e,aT 

[VpVaT] = Dg D, [T] + cLua + C,6;’ + f.&‘))aT + t?&a*T, Go, I(O) 

W,V,V,Tl= ?&J%[TI + (.L,gp + L&x + L&J + L,,& + f.,&& 

+ e&xkY + e,v,of3)aT + (L&J + L&& + L,p!$ 

+ e&J@) + e,e& + Q&y~‘p)a*T + l,e&a3T, 

i.e. by (33) and (37) 

[VaTI = %[Tl + l,aT, 

(see [2, p.631). 
It must be said that, even if compact and expressive, (49) contains the unusual operators 

fiCk), which must be explicitated by (34) and (35) (or by means of (37)), like in the examples 
above, SO it is not completely satisfying. Anyway it is direct and not iterative, for once (34) 
is known, (49) does not contain anymore the ;A or other operators defined by iteration. 
In the tensor case, anyway, the formulation in terms of tensor distributions is much more 
useful and expressive, as we are going to see in the following section. 

4.5. “Distributional” compatibility conditions 

We denote by a boldface letter a distribution or a tensor distribution and refer to [ 12,14- 
171 for a general treatment of tensor distributions and for the definition of Dirac’s mensure 
distribution 6 associated to C. We notice that, with our notations, a fundamental property 
of 6 is &5 = 0, and thus, more generally: 

a~~5 3 0 VA multi-index. (50) 

Of course, S being a distribution, i.e. a scalar distribution, it also results VA6 = 0 and 
R,6 = 0, so the 26 relation introduced in Sections 2.4 and 3.4, becomes, in the case of 6, 
equality. 

Now we define the distributional injnitesimal discontinuity of a tensor: 

a”‘T dAf (-l)“$?S)[T]. (51) 

It could seem strange that definition (5 1) works also for continuous tensors, but its meaning 
gets clear once one considers the definition of product of a tensor and a distribution, and 
that of derivative of a distribution [ 14-171. 
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PT is in the general case a tensor distribution defined on Z. In the particular case that 
T = cp is a function, it is a distribution. 

If 8jT = 0 Vj < m then the relation between infinitesimal discontinuity and distribu- 
tional infinitesimal discontinuity is very simple: @“T = Sam T, otherwise it is given by the 
definition (5 1). 

Now from the “scalar x derivatives” formulae (9) and (4 I), we get (by putting 6 in place 
of @, [cp] in place of I#J and [T] in place of T) the distributional compatibility conditions. 
which hold without any hypothesis of continuity for the curvature tensor: 

(52a) 

~[VAT] = C I’:(,!,, V)@T, 
j=O 

(52b) 

(52b) extends to any order of derivation the analogous formulae by Lichnerowicz [ 15-171. 
Examples of (52b): 

6[V,Tl= V,(S[TI) + -&i3T, 

WpV,Tl = V,V,(&Tl) + (LQJ +&V/J + P.pV,)aT + &d,d*T. 

W,v,vctTl = V,V,Vd4TI) + &tpp + LgpV, + L,Vg + &TV, (53) 

+ C,VpV, + QV,V, + &V,V,)aT + (I&/r + Lg$cr 

+ Lagep + e,eg, + e,e,v, + epe,v,)a27- + e,ese,a37-. 

Lichnerowicz demonstrated the existence of two tensor distributions 8T and a*T (the last 
one he denotes T’ or T) such that (52a) and (52b) hold, the second under further hypothesis 
of a continuous T (i.e. [T] E 0), without giving their explicit form. 

Formulae (52) are direct, expressive, and do not contain strange operators. It is clear that, 
once (44) and (51) are known, (47) is equivalent to (52a) and, if the curvature tensor is 
at least of class CIAI-*, (49) is equivalent to (52b), such that the two formulations can be 
considered “dual”. 

4.6. “Implicit” formulations 

With our notations Cattaneo’s original formula of the general compatibility conditions 
for a regularly discontinuous function [5] is: 

(54) 

where S, is the double-valued differential operator introduced in Section 2.4 and where 
f is included, by definition, among the factors of the kind “e”, and a among those of the 
kind “2”. This formula is very expressive and compact, but “implicit”, in the sense that it 
still needs (A I iterated derivations by S, (and subsequently the position f = 0), thus in the 
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applications it does not give much improvement to the method of simple iterated derivation 
of (48a). One can obtain a similar formula, involving the general differential operators $, 
also for the covariant derivatives of a regularly discontinuous tensor, but it of course gives 
the same problems mentioned at the end of Section 4.4, so we are not going to consider it. 

It is of more interest to apply the same method used in [5] to the case of the distributional 
compatibility conditions. We find that (52) are also susceptible of the following implicit 
formulation: 

(55) 

These implicit formulations (54) and (55) counter-balance in part the above-mentioned 
difficulties by their independence from the complicate definition (5) of the operator coeffi- 
cients. Anyway our “explicit” formulations (47)-(52) undoubtedly have the good qualities 
of clearly displaying the polynomial structure in the infinitesimal discontinuity and of not 
needing any iteration. 
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